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SUMMARY

An snelytic method for the design of automatic controls has
been developed that starts from certain arbitrary criterions on
the behavior of the controlled system and gives those physically
realizable equations that the control system can follow in order
to realize this behavior. The criterions used are developed in
the form of certain time integrals. .

General results are shown for systems of second order smd of
any number of degrees of freedom. Detalled examples for several
cases in the control of a turbojet engine are presented.

INTRODUCTION

In the past several years, there has been increasing develop-
ment and interest in automatic control; in the fields of gun
direction, guided-missile control, and control of gas-turbine
engines, for instance, wlhere very refined and accurate controlled
behavior is required, need still exists for further development of
the methods of controls analysis and design.

Recent developments in this field have been mainly concerned
with the problem of control analysis both in the realm of linear
systems (reference 1) and in the reslm of nonlinear systems (ref-
erence 2). These analytical works answer the following questions:
How will a given system behave or how is its behavior affected
vwhen certein constants in the system are changed?

Another problem of equal and, in some cases, greater import-
ance is thet of control synthesis. Work on this problem seeks the
answer to the following question: Given certealn criterions con-
cerning the behavior of a controlled system, how should the system
be designed? The asnswer to this question should give all aspects
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of the system; for instance, whether the system should be linear,
vhat the gemeral configuration should be, and what the precise
values of all the constants should be.

This synthesis problem has hardly been broached in literature..
The use of analysis as a design procedure offers a partial solu-
tion to this problem in that the analysis of a large number of cases
may reveal, coincidently, a case that satisfies the desired cri-
terions of controlled behavior. Such a method is, at best, long
and tedious and almost always would result in compromises because
the systems chosen to be analyzed would probably be such that they
could never satisfy all the desired criterions.

A method for designing e linesr system to satisfjr certain
special criterions when operating on a random input is developed
in reference 3. This method is applicable as an addition to a con-
trol system whenever random external disturbances are involved.

A partial solution to the synthesis problem is developed in refer-
ence 4 in satisfying the criterions of noninteraction for systems
with many degrees of freedom.

An enalysis made at the NACA Lewis laboratory and presented
herein develops a rational method of control synthesis that starts
from any srbitrary but physically realizable criterions and results -
in the equations for the best system that satisfies these criter-
ions. As is shown, the nature of the criterions, in general,
requires minimizing certain time integrals by using the calculus
of variations and the methods developed are an gpplication of the
calculus of variations to the problem of control synthesis.

A careful scrutiny is first made of the whole problem, fol-
lowed by a development of general results. These general results
are then gpplied in examples to the design of turbojet-engine con-
trol systems. In general, the methods used very asccording to the
order of the differential equation describing the plant, the proc-
ess, or the system being controlled and according to the number of
degrees of freedom or independent veriables. Detailed anslyses
are presented for gpplication to a system of first order and of
one degree of freedom. General results for systems of second
order and any number of degrees of freedom are developed in the
appendix.
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SYMBOLS

The following symbols are used in this report:

a,b,c
c

E

F,H
Fy(y,¥)
F(t,)

£,£,

fl,fz,‘ - -

G,Gl,Gz

L,Ll’Lz

N’P,T’Wf

Oty

W¥s2,
bw,d5y,b2

ges-turbine-engine characteristic constants

constant

function of A

functions of y and ¥y

indicates partial differentiation with respect to ¥
indicates F [y(tl) , ‘:{r(tl)]

arbitrary funcfion

weighting functions used for gas-turbine control
criterions

functions of ¥y

function used for gas-turbine-engine surge criterion

function used.for gas-turbine-engine blow-out criterion

controller gain

temperature limits for gas-turbine engine

deviations of gas-turbine-engine speed, compressor-
discharge pressure, characteristic temperature,
and fuel flow, respectively, from values at some
common equilibrium condition

actual engine acceleration

exponent

time

time at end of transient

variation in time at end of transient

independent varlables, functions of time
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€ small rmumber

X,Rl,%z,?g arbitrary constants

o] ges-turbine-engine time constant for response to té)
temperature ‘ o

T transient time constant of controlled system

Subscripts:

0 initial condition of variable

hif final value of variesble

s setting or desired value of variable

Superscripts:

* indicates case different from optimum ’

The dot indicates differentiation with‘respect to time.

The prime indicates differentiation with respect to the argu-
ment shown.

ANALYSIS
Survey of Problem

Control problem. - An lmportent aspect of the control-synthesis
problem is a clear definition of the criterions of desired con-
trolled behavior. If a varigble y is to be controlled, a reason-
gble criterion is that the time integral of some function of ¥
is to be a minimm or a constant; that is,

ty

£(y) dt = constant or minimmm (1)
0
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(y—-ys)2 dt = constant or minimum (2)
0]

Bquetion (2), for instance, weights the error in y as the square
and according to the time duration of that error. Another type of
criterion may be that which requires & certaln time duration to be
e minimum or a constant; theat is,

ty

dt = constant or minimum (3)
0

The use of a single criterion, such as equation (1), will usu-
ally ‘yield f£(y) = constant. This result is reasonsble because
£(y) can usually be made identically & constant if no additional
criterions are imposed on other varlables in the system. Usually,
certaln limiting conditions exist, however, on other varlables in
the system and these conditions must be included in the original
criterions.

Thus, a possible criterion could be written as follows:
tq \
2
- (b’-.YE) dt = minimum
0

for > (4)
T

£(z) dt = constant

0 J

If, for instance, y = engine speed and 2z = characteristic tem-
persture of a gas-turbine engine, the criterion of equation (4)
states that it is desired to design e control system such that,
for a particular value of a temperature integral, the integral of -
the speed-errof squared is a minimum. This criterion may be used
if, for instance, it is known that an over-tempersature condition
can be tolerated for a certain period of time and it is desired %o
keep the average speed error at a minimm during a transient.
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The general theory will show that as meny criterions as
desired of the type shown in equations (1) to (4) can be included
together and a control system can be derived that automatically
satisfies all these criterions simultaneously.

Another aspect of the control criterions is the end conditlons
of the integrals of equations (1) to (4). The time interval for
which these integrals are to be a minimm or a constant must be
chosen. A reasonsble time interval 1s any duration during which
essential external disturbances are constant and during which the
system to be controlled moves from one essentlal level of opera-
tion to another. The essential external disturbances are those
that cannot be immediately corrected by the control system. If an
essential external disturbance were allowed within the time inter-
val of the criterions, no physically realizsble system could be
expected to anticlpate this disturbance so as to behave properly
before this disturbance occurs. An egssentlal level of operation -
is any specific condition of only those variables that must be
continuous. It will be shown that the essential level of opera-
tion gppears as a nabural boundary condition for the type of cri-
terion used. 1In the case of a turbojet engine the transient
behavior of which can be described by a first-order differential
equetion, the engine speed determines the level of operation. If
a lag exists in the fuel system or between temperature and engine
speed, then both engine speed and acceleration are required to des-
cribe the essentiael operating level of the engine.

Analytic problem. - The control system resulting from any
design method must be physically realizable. There are two aspects
to this problem. First, it is possible to set down criterions that
are not realizeble with any system or are incompatible with eech
other. If such criterions are used, the unrealizgbility will
appear either as a requirement on the control to look ahead into
the fubure or as an inability to satisfy the boundary conditions
of some differential equation. In most cases, & clear understand-
ing of the criterlons used and of the system to be controlled will
indicate incompatibilities of this sort.

The second aspect of physlical realizebllity is purely mathe-
matical. It is desired to derive a description (a differential
equation) of the control or the controlled system that satisfies
the criterions of control and all the necessary ‘bounda.ry conditions
that arise in the derivation of this egquation. Although the mathe-
matical solution of the problem may be any derivative or integral
of this differential equation, the physlcal solution of the prob-
lem requires the differential equation that itself satisfies the
boundary conditions and for which no undetermined comstants of
integration exist. Thus, such forms as
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and (5)
Cx

)

y

are not necessarily interchangeable as descriptions of some part of
a controlled system beceuse the forms differ by an undetermined
constant of integration. For stable linear systems, the effect of
this constant becomes vanishingly small; for the general nonlinear
systems presented herein, however, this constant must be considered.

Stabllity problem. - The requirement of stabllity is a special
criterion that does not enter into the main body of the methods of
this report. It may enter in the final steps of the method where '
the final differential equation describing the controlled system
may be the integral of a higher-order differential equation that
satisfles the necessary boundary condition for stability. In addi-
tion, it i1s always necessary to add to the controlled system a
stability device that does not affect the behavior of the system
as far as satisfying the other criterlons 1s concerned. This
device can be described as follows:

\

when
Yy =Jg
then (6)
y=0
or, for a second-order system,
when
Yy =Yg
and
y=0 (7)
then
Y =0

General Theory and Results_

It bas been showm that the criterions for control can be
developed in the following forms:
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tq W
£(y) at
0
Ty
. (y-7.)° at
. Y (@)
t,(z) at
t1
at
0 ‘ J

and so forth. If, for such a list of criterions, one of the inte-
grals is to be a minimum under the condition that the other integrals
are to be constant, it is sufficient (reference 5) to make

Xty Cy ‘ Cy 13

2
f(y) at + N (v-v5) at + Ay £ (z) dt + A3 dt = minimm
) 0 )

(9)

or

61
J: Er(y) +7\l(y-ys)2 +Nof () + ?\3] dt = minimum (10)

The A's are arbitrary constants that enter into the control sys-
tem as the adjustdble parameters snd are preclisely determined by
the choice of values that the constant integrals are to have.

The technique of the A miltipliers is widely used for prob-
lems of this type where one condition is to be a minimum under
other restrictive conditions. Indeed, the conditions need not be-

2093
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in integrsl form and any functionsl or differential relation among
varisbles can be handled in 'a similar manner (reference 6).

Equation (10) can be made very general when all possible
restrictive conditions are included. In the final equations, which
are derived later, if any one criterion is not to be used, then the
corresponding A—*>0. If any of the criterions are to be zero (as
for the case of & variable having an absolute limit), then the cor-
regponding A—x

If, for this development, the system to be controlled is of
first order and of one degree of freedom (hés one independent Jveri-
eble), then the variables y and 2z are such that z = z(y,y).
Equation (10) can then be written, in genersl, as

121

F(y,y) dt = minimum (11)
0

In equation (11), F is a continuous function of y and fr, and
¥y 1s a continuous function of time.

The calculus of variations (reference 5) is used to determine
Y &as & function of time such that the integral of equation (11)
is & minimum; that is, if the solid curve of figure 1 makes the
integral a minimum, any other curve (such as the dashed one) will .
meke the integral equal to or greater than the first integral. If
the two curves are very close, the condition that the two inte-
grals are equal will meke the integral of equation (11) stationsary
(maximum, minimum, or inflection point).

The problem is similar to that of finding the meximm or mini-
mum point on a curve by setting the first derivative equal to zero.
Vhether a maximum or minimum point exists.-is decided by the second
derivaetive at that point. In the variational problem, proving a
true minimum involves taking the "second varistion." As in the
problem of finding a minimim on a curve, the second variation proves,
at most, a local minimum and not an sbsolute minimum. For the
specific examples discussed herein, an gbsolute minimum is proved
by another method. In many cases, the physical meaning of the
equations will indicate the existence of a unique minimm that
obviates going further than the "first veriastion.”
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On figure 1, the curve for minimizing the integral of equa-
tion (11) is the solid curve having the value y(t) at any time.
Any other curve differing from it by a small amount is shown as the
dashed curve having the velue y(t) +¢€ By(t) at any time, where
€ 1is a small number and 5y(t) is an arbitrary continuous func-
tion of time. The condition for the integral of eguation (11) to
be stationary is

tl+€ 81:1
a

— F(y+e &y, y+€ dy) dt = 0 (12)
de_Jt=0

at

€=0

where %[Sy(t)] = 8y(t) (reference 5). The time duration for

the integral of equation (12) is such as to start at some definite
time (t=0) but not to end at a definite time but rather along
some curve y = £(t) (fig. 1), in order to allow the proper bound~
ary conditions of moving from one essential level of operation to
another, as previously discussed.

Performing the operation indicated by equation (12) leads to
61 1

o Fy 8y dt + . Fy By at + F(t) 8t; = 0 (13)

Integrating the second term of equation (13) by parts gives

d L] .
. [Fy iy (Fy)] 8y dt + Fy &y| + ?‘(tl) 8ty = 0 (14)
0

Because 8y is an arbitrary function, the integral and the
boundary-condition terms must vanish separately. The geometry at
the end condition (t=t3, fig. 1) gives

Z093
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By(t1) = [f'(tl) - a’r(tl)] Bty (15)
as €—*0. The two conditions that follow from equation (14) then
become

Ty
F,o- (Fy)| By at =0 (18)
0 A y
and

Bty {F(tl) + Fb}(tl) [ t(t1) - ir(tl)]} - F}',(o) 5y(0) = 0
| (17)

The time interval during which the criterion of equation (11)
is to hold is considered as that during which the system moves from
one essentlial operating level to another; in this case, from one
definite value of y +to another definite value of y. Thus,

]

8y(0) = 0
and ' ‘ (18)

£1(%q)

0

Equation (16) is satisfied only if the integrand is zero, and,
because &ty # 0, the two conditions of eguations (16) and (17)
become

Fy = é‘% ) (192)

and

F(ty) = Fy(ty) y(ty) (191)

Equation (192a) need not hold at + = O because 5y(0) = 0. The
only condition that need hold at t = O is that F&(O) is finite,

which will be true if ¥y is continuous st + = 0. At the start
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of a new transient, y, F, Fy, and Fy may be discontinuous,

vhereas at other points (0 <t < %) F; will be continuous
because of equation (19a).

Equation (19a) is the differential eguation for the y(t)
that satisfies the original criterion of equation (11). The physi-
cal answer to the problem is the first integral of equation (19a),
which satisfies the boundary-condition equation (19b). This solu-
tion is

F(y,y) = &'Fi(y,&) (20)

and vhenever ¥, F&, and so forth, ‘are comtimous,

7 [ry - & )] =0 (22)

by differentiating equation (20) with respect to time. Thus,
either ¥ = O (vhich is only true during stability) or equa-
tion (19a) is satisfied.

Thus, equation (20) is the description of that physically
realizable system the behavior of which will autometically end
similtaneously satisfy those criterions included in the function F
during that time interval for vhich the external disturbances are
constant and during which the system goes from one opersting level
to any other opersting level. A stebility device must be added to
the system; the description of such an idesl device is as follows:

when
¥y =7y

then (22)
y=0

An additional condition must be met 1f }', is discontinuous in the
intervel O <t < %;. In this case, Fl.f mst be continuous during
the discontimuity in ¥; F)}, however, will usually be discontlnuous
when y is discontinuous. This discontinuity in F; usually

means that some essentisl external disturbance hes entered the sys-
tem and the point of discontinuity must be the start of a new time
interval.

2093
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Application to Turbojet-Engine Controls

In the usual case of designing turbojet-engine controls, the
engine speed that sets the essential operating level of the engine
and, in the main, other pertinent characteristics such as thrust,
is to be set or controlled. Limiting conditions of the engine are
those of overspeed, overtemperature, compressor surge, and rich
burner blow-out. The following criterions on the behavior of this
engine are typical:

~
15
_ fl(N-Ns) dt; for speed control
0]
Ty
f fz(N) dt; for speed overshoot
0]
1
f fs('l’) dt; for temperature overshoot and
0 undershoot ' ? (23)
1
f4[P - g(N)-_l dt; for compressor surge
1
fs[P - h(N)] dt; for blow-out
0]
1
dt; for rise time )
0

Figures 2(a) to 2(e) show the nature of the functions appearing in
equation (23). The variasble involved 1s essentially weighted by
the function shown and integrated with respect to time. The quan-
tity P - g(N) is the amount the compressor-discharge pressure
exceeds the safe pressure for surge and g(N) (shown in fig. 2(f))
is the compressor-discharge pressure for each engine speed at a
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safe value below surge. Rich burner blow-out can be handled in a
similar manner (h(N) is shown in fig. 2(g)). The rise time is
the total time for the system to move from one essential operating
level to the other.

The linearized engine characteristics can be expressed, by
assuming first-order behavior, as follows:

T = aN + aol (248)

P = BN + cT (24v)

Thus, the integrals of eguation (23) are all of the form
2l

f(N,ft) at . (25)
o]

where f -is a continuous function of N and N, and N (barring
impulsive temperatures and the like) is a continuous function of
time. .

Speed control; case A. - If only the error in speed control is
considered important, the criterion becomes

Gl

£7(F-Ng) ét = minimum (26)
0

vhere F = £1(N-Ng). Equation (20) becomes

fl(N"Ns) =0
and from the nature of fy (fig. 2(a)), (27)
N=1N

s

This result meens that, in the gbsence of other criterions on the
engine behavior, this speed control should keep speed error identi-
cally zero, vwhich is physically realizsgble only in the sense of
allowing infinite temperatures and the like to keep the speed error
identically zero. This result, however, is inconsistent with the
previous development of equation (20) in that N is now a

2093
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discontinuous function of time and the time interval of the inte-
gral of equation (26) is zero. This instance is actually a trivial
case of the general problem. The result (equation (27)) does indi-
cete that a criterion like that of equation (26) must be accompanied
by an additional criterion (temperature overshoot, for instance)

to glve a physiceaelly realizgble system.

Speed control with tempersture-limiting criterions; case B. -
If the error in speed control and the overshoots and undershoots

in temperature are to be considered as the primary criterions of
control, then from equations (10) and (i1),

t1
j; [fl(N-Ns) + fo(T)] dt = minimum (28)

vhere F = fl(N-Ns) + A fs(T). Equetion (20) then becomes

£1(N-N.) + A £5(T) = N aol £5'(T) ~ (29)

and the ideal stablility device 1s such that
when
N = Ng

then (30)

¥N=0
Equations (29) snd (30) describe the complete control system.

n
In figure 2(c), it is convenient to let f£3(T) = (T-Ly) for
T>L, and f,(T) = (T- l)n for T <L;. In general, the power n

should be =1, because, wvhen n < 1, T may be infinite and of such
nature as to meke N discontinuous and physically unreal even

3l

though fs(T) dt is finite. In the examples of this report,
0 )

=2 and f£(N-Ng) = (N-NS)Z.
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A variety of methods of setting uwp the control system to real-
ize equation (29) exist. When the preceding expressions for £
and fz are used, equation (29) can be put in the convenient form

2 N O

(N-KS) .
— (1-aN)? = aZe?n?
where, for acceleration, when N < N, then
HN>0 and L=1L > (31)

2

and, for deceleration, when N > NS » then

N<0 and L=1, )

A schematic diagrem of the system is shown in figure 3, where
equation (31) is considered to give a desired N <for eny value
of N, Ng, end L. Consistent with equation (31), e right-triangle
construction is used to glve a desired N. The actual N can be
mede very close to N by using a high-gain proportional controller,
as shown. Provision must be made to change the sign of N and
the value of L when R-N; changes sign. 1In ad.d:}'tion, the sta-
bility condition requires g provislon for making N = 0 vwhenever
speed error is very small or zero.

The use of a high-gain proportional controller, which follows
from the requirement that N may be discontinuous, means that the
fuel-flow rate required may be infinite 1f lags exist in the fuel
system or in the feed-backs. But, as no criterion has been set on
fuel-flow rate, this requirement does not violate the original
criterions. If necessary, however, a criterion on fuel-flow rate
may then be added to equation (28). Even though a criterion on
temperature is being satisfled, figure 3 ddes not use any direct
nmeasurement of temperature. Actually, the equation for tempera-
ture (equation (24a)) is used as an indirect indicetion of
temperature.

The control system of figure 3 has one adjustable parameter A.
For any velue of 7, this system will, for the value of integral
temperature-overshoot squared obtained, give the minimum value of
integral speed-error squared. The value of A determines the
actual value of the integral temperature-overshoot squared.

2093
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. The integral temperature-overshoot squared-as a function of
1ls shown in figure 4 for the special case vhere e.’N‘s = L; that is,
acceleration or deceleration to the speed that corresponds to lim-
iting temperature. In this case, the system of figure 3 becomes a
simple first-order lag system and equation (31) becomes

E(L-all) = aol ' (32)

| E = (1 + i)llz

In filgure 4, the integral speed-error squared, the maximum
temperature, and the time constant for this transient are also
shown as functions of A. A curve showing the minimum rise time
for the corresponding temperature integral is included for compari-
son that will be discussed later. The equations for the curves of
figure 4 are as follows:

vhere

. )
2 2
1 -1, 4t = (E-1)
o L-aNO 2R
2
2| /N-N
& 5 ) at = = (33)
g, L-BNO AN
T L
Lm:; =E-1
o
(tim tant) = = L
e congian o E ),

The left side of these eguations have been put in dimensionless
form. The maximum temperature Tphex occurs et the beginning of

the transient. The time constant T is that for the controlled
system and is shown compared wlth the engine-time constant o.

From figure 4, the value of A is chosen as a compromise
between the various quentities of equation (33). For E=1 (A=),
the temperature does not overshoot, the speed integral is 0.5, and
T =0. A8 E increases (A decreasing), the temperature integral
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and the meximm temperature increase, whereas the speed integral

and the time const.an"b decrease. A value of E = Af2 (a.z7\ = 1)
appears to be a good compromise and is used for the subsequent

discussion.

The behavior of the system of figure 3 can be best seen by
drawing the trajectories in the phase plene shown in figure 5,
vhere a0l is plotted against alN for lines of constant alg
a,ccording to equation (31). Lines of constant temperature are
45° parallel lines in this plot and the lines of T = L are shown.
Each trajectory intersects, end is tangent to, the line T =1 at
N = Ns' Figure 5 completely describes the transient behavior of
the system. For any starting point anyvhere on the plane (for
instance, point A), the system will sutomatically move the oper-
ating point to that trajectory corresponding to the Ng that
exists (point B) and then along this trajectory to the point T =L,
(N = Ng, point C), and finally the stability condition will enter
to move ‘the operating point along the solid vertical line %o

= 0 (point D).

The time sense for these transients is obtained by solving
the differential equation (equation (31)) for the speed and the
temperature time responses. The equations for these solutions are
as. follows:

2
B 1 +A/E%-1 sinh E (& + C
() » 47 s (£ 9
g2 (T”L)=I\/E2-l sinhE(g—+C) + EAJES-1 coshE(§-+c)+(l—E2)

L-al,

(34)

These transients are shown in the general case in figure 6 for a
step increase in Ng. Maximum temperature occurs at t = 0 and
the temperature overghoot decreases as N increeses and when
N=Ng, T=1 and T = 0. The stability condition then causes T
to drop to its equilibrium value at this point. The time scale
shown in figure 6 corresponds to the specific relative values of
the ordinates shown.

Minimm rise time and temperature-limiting criterions; case C. -
In order to obtain a minimum rise time for a comnstant temperature
integral, the requirement is that

2093
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| by _
‘ J‘ l} + A fS(T)] dt = minimm (35)
0

vhere F = 1 + Afz(T). Equation (20) becomes
1+ A £5(T) =raok £5'(T) (38)

and the ideal stebility device is such that
when
N = N,
then (37)
N=0
vhere N, 1s the desired steble N. Equations (36) and (37) des-
cribe the complete control system. Equation (36), and therefore

the control system proper, does not include Ng and, in this case,
the stability device is independent of the conbrol system proper.

Vhen the same fz(T) is used as was used in the previous
cese, equation (36) can be put in the convenient form

%--l- (L-za.lﬂ{)2 = azozﬁz A
vhere, for acceleration, when N < Ng, then
ﬁ >0 eand L =1Ly s (38)

and, for deceleration, when N > Ny, then

N<O and L =1L y

A schematic diagram of this system satisfying equation (38) is
shown in figure 7. This control system 1s the same as the previous

N-Ng
N

system (fig. 3) except that in figure 7 L replaces on

BN
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one leg of the right-triangle construction and the stabllity con-
dition mist be imposed outside the control system, as N, does
not enter into the criterion of control (equation (35)).

The system of figure 7 has one adjustable parameter 7 which,
as before, sets ‘the precise values of the integrals entering into
the criterion (equation (35)), as well as all other behavior
characteristics. :

The temperature integral is shown in figure 8 as a function
of A for the special case where aNg = L; that is, for accelera-
tion or decelerstion to the speed that corresponds to limiting tem-
perature. In addition, the rise time, the maximum temperature,
and the integral speed-error squered are shown for this tramsient.
A curve rhowing the minimum speed integral for the corresponding
temperatu e integral (from case B) is also shown and will be*dis-
cussed later. The equations for the curves of figure 8 are &s

follows:
tl .
2 / 2
R 1+A(L-al, )
1 ( T-L ) at 0
sJo

- -1
L-aNO (L-aNo)l\/_)\

6

af-

b = sinh * [(L-aNO)'\/T]

Thax-T _ 1
L-aNo  AfA(1-aN,)

by
2 (N-Nf )2 ) /\,l-l-)\(L-aNO)Z ) 1
0

at =
L-alg z(L-aNO)'\/ A 2N(L-aN,)

2 sinh™ 4/ (L-al))

- (39)
Again A is to be chosen as & compromise between these various

1
quentities. In this case, 7?\—- has the units of temperature
and A\ (L-aNp) is the pertinent dimensionless parameter. For

S
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a fixed A, the initial speed Ny wlill therefore change the time
integrals and en increased L-~aNy will decrease the temperature

integral and the maximum temperature and increase the rise time !
and. the speed integral.

The dynemic behavior of the system of figure 7 is shown in the
phase plane in figure 9. This figure is & plot of aoN against &N,
according to equation (38), for various values of A. Lines of
constant temperature are 45C parallel lines and the lines T =1L
are shown. For any fixed A\, only two trajectories are followed:
one for accelerating and one for decelereting. From any starting
point on the plane, the system will automatically move to that
trajectory corresponding to accelerastion or decelerstion and will
move along this trajectory until the stebility condition enters
(at N =1Ng) to meke N = 0.

The dependence of the time integrels on Ny may require A
to vary with Ng. In figure 9, Bp's corresponding to each A are

shown such as to keep A(L-aNg)2 = 8. The value of this perameter

was taken so as to have the tempersature integral in this case
equal to that of the previous case for purposes of compearison.

The time sense for these tranmsients 1s obtalned by solving
the differential equation (38), for the N-t and T-t transients.
The equations for these solutions are as follows:

A/ A (eN-L) = simh (% + c)
N/;:(TAL) =e (% * é)

These transients are shown for the general case in figure 10 for a
step increase in Ng. The temperature will jump to some value
gbove L, but in this case, unlike the previous case, the tempera-
ture continues to increasse as the speed increases. Maximum tem-
perature occurs at the end of the transient. Whenever N = Ng,
two such conditions are shown, the stgbility condition takes over
end T 1s reduced to its equilibrium value. The time scale shown
on figure 10 corresponds to the specific relative values of the
ordinates as shown.

(40)

Comparison of cases B and C. ~ In case B, a system was devised
that, for a constant value of the integral temperature-overshoot
squared, glves a minimum integral speed-error squared. In case C, a
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system was devised that, for a constant temperature integral,
gives a minimm rise time. PFor case B, the rise time is not a min-
imm but can be compared with the minimum rise time of case C.

For the special transient of accelerating to T = L, the system of
case B reduced to a first-order system the time constant of which
is8 shown in figure 4. Becsuse five time constants are comsidered
as the rise time of an exponential, the time constant of case B
should be compared with one~fifth the minimm rise time of case C.
In figure 4, for corresponding values of the temperature integral,
one-fifth the minimum rise time from case C is plotted. Figure 4
now shows that the rise time for case B is gbout twice the minimum
possible rise time.

At corresponding values of the temperature integral,
t
1

2
(N-Ng)  dt for case C can be compared with the minimum

0
possible value of this quantity from case B. The minimm value
!
2
of o (N-Nf) dt 1s plotted in figure 8. It is seen that, for

1
the same temperature integral, (I\I—Nf)2 dt when minimum
0 .

rise time is obtained is about 120 percent of the minimm possible
ty

value of (N-Nf)z at.
0]

Proof of ebsolute minimm. - As previously noted, the minimi-
zation of equation (11) involves not only the condition that the
first variation be stationary, which leads to equation (20), but
algso that the second varistion be positive. This second condition,
however, would prove, at most, a local minimmm for the condition
of equation (11). A special proof of an @bsolute minimum is shown
as follows:

If equation (11) is written in the following form:
Y

?(y,7) & = mintmm (41)
Yo ¥ ’

2093
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and y is considered as a function of y for the minimum condi-
tion and y* d1is consldered as a function of y for any other pos-
sible case, then the condition for an absolute minimm is that

T g

F(¥,5%) % - P,y L2o (42)

Yo Yo y

. , ,
) - I | &
j:) Er”(y,y) 3 F(y,:)f)] 3.,*2-0 (43)

where dy/y* is a positive differential. If the function F is
considered in & general form, quadratic in y, as follows:

or

F(y,7) = &(y) + 7 6y (¥) +¥° Goly) (42)

then equation (43) becomes
I

(3%-3) [&* Go(y) - -‘i‘ﬂ] T >o (45)
y T*

Yo

The equation of the control system (equation (20)) becomes,
for the form of F assumed in equation (44),

7 eoly) = 6(y) C (46)

Using this expression for G(y) pubs equation (45) in the form
N ‘

Go(y) (Y*-Y)

-—— >0 (47)

For cases B and C, Gp = 2a%0% vhere A= 0. Thus an absolute mini-
mum is proved for these two cases.

e e ¢ - ~ e - e ——
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Degree of minimum, case B. - The left side of equation (47)
can be used as a measure of the deviation from optimum conditions
when the methods of this repor13 are not used. If the two cases
(N for the optimm case and K% for any other case) are compared
at the same value of the temperature integral, the left side of
equation (47) is the difference between the integral speed-error
squared for any case and the minimum possible value of this gquantity.
The ratlio of this deviation to the minimm value becomes

t
2
Fractional increase _ _2E f T*-T dy (48)
in speed integral =~ _2 - y
sp gr E°.1 Yo Tf TO oy*

for the transient of acceleration or deceleration to limiting tem-
perature. The coefficient of the integral of equation (48) for

the value of A previously chosen (az)\= 1) 1is 24a/2.

Case B can also be considered as giving & minimum value of
the temperature integral for any definite value of the speed inte-
gral. If two cases (N for the optimum and M¢ for any other
case) are compared at the same value of the speed integral, the
left side of equetion (45) is proportional to the difference
between the integral temperature-overshoot squared for any case
and the minimum possible value of this quantity. This deviation
can be written as

f

2
Fractional increase in _ _ 2E - dy (49)
temperature integral (E-l)z Yo T - oy*

for the transient of acceleration or deceleration to limiting tem- |
perature. The coefficient of the integral of equation (49) for

the value of A previously chosen (a?A =1) is 18.4.

Degree of minlmim, case C. - If the two cases N and R* are
compared at the same value of the temperature integral, the left
side of equation (47) is the difference between the rise time for
any case and its minimmm possible value. This deviation can be
written as

2093
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2
Fractional increase _ A (L"aNO) (T*-T )2 dy
in rise time - — ik
sinh  V/A(L-alg) Uy, T/ o*

(50)

for the transient of acceleration or deceleration to limiting tem-
perature. The coefficient of the integral of equation (50) for

the value of Af A(L-aNg) = 22 previously chosen is 4.54.

Case C can also be conslidered as giving a minimm value of
the temperature integral for any definite velue of rise time. If
the two cases N and K¥ are now compared gt the same value of
rise time, the left side of equation (47) is proportionel to the
difference between the integral temperature-overshoot squared for
any case and the minimum possible value of this quantity. This
deviation can be written as

Ve

AN (T-ap) (E_T_ Lay
J0

Fractional increase in To-Tp| oy*

temperature integral ﬁL-aﬂo)z + 1- ﬁL—aNO)

for the transient of acceleration or deceleration to limiting tem-
perature. The coefficient of the integral of equation (51) is 16.4
for the value of AfA(L-alg) previously chosen.

(s1)

GENERAT, SUMMARY

When the criterions on the behavior of a controlled system can
be expressed In certain general forms, as follows:
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N

Ty
f £(y) at

0

1

J: (7-3s)° at

1 ? (8)
f t,(z) at

0

ey

at
0 S

where the time interval is teken as any duration during which
essential external disturbances are constant and during which the
system moves from one essential operating point to another, the
optimm control can be considered as one that minimizes one of the
integrals of equations (8) while mainteining the other integrals
at prescribed values. The analytical problem, according to the
calculus of variations, reduces to the following equabion:

1 6y 1 ty

2(y) at + N (y—y,a)2 at + Ay f,(z) at + Az dt = minimm
0 0 0 0

(9)

For general first-order systems, where z = z(y,y), equation (9)
reduces to

'bl‘

. F(y,y) dt = ninimm (11)

2
vhere F = £(y) + )\l(y-ys) +Ng £,(2) + N3. The equation neces-

sary for the control system to satisPy equation (11) and all the
boundary conditions becomes

F(Y:&) = 3} F&-(}’,:‘}) (20)
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This equation should be followed by the control system proper. In
addition, a stability device must be added to the system the ideal-
ized characteristics of which would make y =0 when ¥y = ¥g.

The arbitrary multipliers )\ are then found by evaluating
the integral criterions involved in F. The transient behavior of
the system derived is found by solving the differential equa-
tion (20). The degree of the minimum or the amount suffered when
sny other control system is used was evaluated for the special
cases considered. A summsry of these developments follows for a
special form of the F function, quadratic in y, where

F(y,7) = 6(y) + 7 G(¥) + 7 Ca(y) (44)

Control-system equetion. - For F in the form of equa-
tion (44), the control-system equation (20) becomes

2 _ G(y)
¥ ) (52)

The function ‘Gl(y) does not affect the control system and the

control-system equation gives an explicit expression for & as a
function of Y.

Evaluation of integrals. - If an integral of a func-
tion H(y,y) is any one of the criterions to be considered, it can
be evaluated as follows:

1 I ‘ =
y _ /G(y) Galy

Thus the integrals can be evaluated without solving the differen-
tial equeation (52).

Translent behavior. - The differential equation (52) cen be
easlly solved as follows:

=y
A /GZ(X) ax = t -t (54)
x=y, G(x) 0

27
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Degree of minimum. - Equation (47) was derived to prove the
gbsolute minimum for the special cases considered and can be used
to evaluate the degree of the minimm found. Thus,

Ty * ey ' Yo ”
By, ax - | EG) e = | G [ - 5] 52
0 0 ¥y 7*(y)
0
oy (55)
where H(y,y) dt is to be a minimm or meximm.
0

If Gz(y) >0 for ¥, <¥< ¥p, then an absolute minimm is
obteined; if Gp(y) < 0 for Yo < ¥ < ¥p, an sbsolute maximm is

obtained. Eguation (55) also indicates that the degree of minimum
(or meximum) veries with the magnitude of Gg(y). The y* in the

denominator indicgtes that for any deviation Iy*-yl in }", it is
better to err on the side of a larger ly* l

SUMMARY OF RESULTS

A rational analytic method for the design of eutomatic con-
trol systems has been derived. Criterions on the behavior of the
controlled system were developed in the form of certain time inte-
grals. When any of these arbitrary but physically realizsble cri-
_terions were used as a starting point, those equations that the

control system must follow were derived. The criterions developed
required the minimization of certein time integrals using the cal-
culus of variations. The method gave not only a description of
the behavior of the controlled system but also gave those physically
realizable equations that the control system can follow in order
to realize this behavior. General results were shown for systems
of second order and of any number of degrees of freedom.

Lewls Flight Propulsion Laborstory,
National Advisory Committee for Aeronautics,
Cleveland, Ohio, October 11, 1850.
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APPENDIX
SECOND-ORDER SYSTEMS OF SEVERAL DEGREES OF FREEDOM

It is beyond the scope of this report to detalil the cases of
higher-order systems and those having several independent varisbles.
The general equations for these cases will be developed and it is

expected that subsequent reports will cover thelr spplications in
detail.

For the case of a second-order system with two degrees of
freedom, equation (11) becomes

Ty

F(y,¥,¥,2,2,2) dt = minimum (A1)
0

where y end 2z are independent functlions of time. The condition
to satisfy equation (Al) is

tl+€ S'tl

. . n n . . n "
Ie F(y+edy,y+£8y,y4€8y,2+82,2+¢05z,2+edz) dt = 0 (A2)
=0

at
€=0

The time duration of the integral of equation (Al) is thetf begin-
ning at a definite time (t=0) but not ending at any definite time
but rather along some curves: y = £1(t), ¥y = £3(t), z = g1(t),

and z = gp(t) (fig. 11). The functions &y and &z are arbi-
trary and independent functions of time.

Performing the operation indicated by equation (A2) gives
1

. (Fy By + Fy oy + Fy 8y + F, 8z + F, 8z + Fy 8z) dt + F(ty) 8ty = 0

(43)

29
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After integration by parts,

171
F —i(F')+£—(F")8'dt+ F -E—(F°)+92—(F")8zdt+
Yy a vy 7 Wy %Y z " g v 2 2z
0 dt* 0 . at
t1
. el d _..
(Fy 8y + Fy 8y - 5t Fy Sy)]o + F(tq) Bty + (a4)

t
. a 1
[Fé &z + Fy 8z - — (F) az]]o

As before, the integrands of the integrals and the boundary-
condition terms must venish separately. From the geometry at the
end condition (t=ty, fig. 11),

L
o

, , )
oy(ty) = 27 (5) - 78] o8y
83(t7) = [£2'(01) - ¥(t1)] otp $
. (45)
82(t) = [g'(81) - 2()] 8ty
82(t) = [gz'(tl) - 'é(tl)] &ty

»

The three conditions from equation (A4) then become

2093
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2 A
d d
Fy-a;c-(FS,) +d—t§(F§) =0
F -ki (F:) + & (F) = 0
Z dt Z d‘bz pA
Eﬁ‘-}}Fy+y—(F) zFi+éa%(F'Z')—.z:F:zzlt=t+
, 1
£q4 (%) |Fs i(F--)T + £or(tq) Fultq) +
46
81" (%) [Fz - % (F.z)-‘ ot + 83" (t7) Fi(tq) +
==t
8y(0)[F:;r — (% )Lzo + 8y(0) Fy(0) +
52.(0)[Fé - dit (F-z-)]t_o + 82(0) Fy(0) =

/

The first two of equations (AB) are the differential .equa-
tions that satisfy the original criterions of equation (Al). The
physical solution to the problem is the pailr of solutions of these
equations that satisfy the boundery-condition equation of equa-
tion (A6). If the first of equations (A6) is multiplied by ¥y
and. the second by z and the equations are added, an exact deriv-
ative is formed the integral of which is as follows:

ve . - d .
F-yFy+y (Fy) yF;-zFi+zE(F'z')-zF'z‘ c (a7)

A study of the boundary-condition equation of equation (a8) then -
shows that the physically reasonsble boundary conditions- should be
as follows:
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If Fy #0 or Fy# K, then 8y(0) =0 and f7'(%) = o.\

Ir Fy £ 0, then 8y(0) =0 and f£5'(ty) =

If Fy #0 and Fy # K, then 82z(0) =0 and g ' (%) =

Ir Fy f o0, thenl 8z(0) = 0 and gp'(t7) = O. Y,
(48)

Then in equation (A7), C = O and the final solution to the
problem of equation (Al) for the boundary conditions of equa-
tion (A8) is as follows:

V o . > d oo e [X] e . hd d ee o L3 T
F—yFy+y€€(Fy) -yFy-ze+zt—1-€(F -2zF; =0
and either
F -i(F')+i(F")=O ?(AQ)
y at 7Y d.tz ¥
or
dz
F, - (F ) + — (F") =0 J
dt

The meaning. of the boundery-condition equation (48) is to
define the originel criterions for thet duration during which the
system moves from one essential operating level to another. Thus,
if all conditions of equation (A8) must hold, the system goes from
one definite v, fr, z, and z ‘to any other definite ¥, Sr, Z,
and z. The first differential equetion of eguation (A9) would be
of third order and the second or third equations of (A9) would be
of fourth order. If equations (A9) are integrated to obtain a
palr of second-order differential equations having three constants
of integration, the choice of these three constants can then deter-
mine a desired end point; that is, the values of 7y, z, and z at
some final y.

The physical solution to the problem, then, is the pair of
second-order differentisl equations that are solutions of equa-
tion (A9) and the constants of integration of which are evaluated

2093
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so that the system goes through some desired end point. This end
point must be such as to allow the possibility of stebility. Such
an end point may be written ss follows:

when
¥y =7,
then
¥y=0 (410)
' Z = ZS
z=0

which gives three conditions for the evaluation of the three con-
stants of integration. A stability device must still be added to
the system so that, at the point when equation (A10) holds,

y=0
and - (a11)

Z

i

0

Equations (A9) are symmetric in the varigbles y and z,
vhich indicates the nature of the extension for more independent
varisbles. Thus, if a third independent function w exists, the
originel criterlon would be written as

F(y,‘_‘;";y",z,é,.z.,w,'l},;}) d.t = minimml (AlZ)

This condition is satisfled under boundary conditions similar to
equation (A8), where two additional conditions are added on the

varlable w and the following equations describe the controlled
system:
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and any two of the followlng three equations:

NACA TN 2378

- - - d LXJ hel . o > - hd i * e e *e
F - 3Fy + 5 o (Fy) - Wy - &) vz o (7)) - 2y

e . ° d . iy’ L
ww+wd—t(Fw) - W =0

F -—d—(F')+‘f——(F")=o
Yy o at vV cltz J $(A13)
2
d . d ) -
FZ—E(FZ)+——§(FZ)-O
at
2
d . é - o
F‘W‘ - Et' (F'W') + E;-é' (FW) =0

/

The three equations of equation (A13) can then be integrated to

give three second-order differential equations where the five con-

stents of integration are evaluated so that the system goes through
the desired velue of ¥y, z, 2, w, w for some final value of Y.

1.

2.

3.

4.

5.

6.
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y=r(t)

-6ty

t tq

Figure 1. - Illustration, of curves for minimization of

T
JA F(y,¥) at.
0
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£q(N-Ng) £o(N)
8
QO
Y
0 N-Ng Nmax N
(a) Speed control. (b) Speed overshoot.
£(T) £4[P-g(N)]
I Lo T 0 P-g(N)
(¢c) Temperature overshoot (d) Compressor surge.
and undershoot.
£5[P-n(n)] h(N)
g(N)

,,/’//4 -

v

P-h(N) N

N

(e) Blow-out. (f) Compressor 1line (g% Compressor line

below surge.

elow blow-out.

Figure 2. - Arbitrary weighting functions for various control criterions

and pertinent engine characteristics involved.
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When N > Ng, N < O and L=l
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Figure 3. - Schematic diagram of control for turbojet englne for
case of speed control with temperature-limiting criterions
(case B). Stability device must be added to this system.
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Figure 5. - Phase plane showing dynamics of controlldﬁ systém for speed control with temperature-

limiting criterions (case B), where a2\ = 1.
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1limiting criterions (case B), where E = A2,
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Filgure 6. ~ Typlcal translent of controlled system for speed control wlth temperature-
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&ONe

TR, ]

W
. ‘ £ :
L-aN acN x K—>» = F—€>4 Enginq}:::§%——€>

l When N < Ng, N> O'and L = Lp

F—%A ‘ When N > Ng, N <0 and L = L3

’ﬁ‘nﬁnlr'

Figure 7. - Schematic dilagram of control for turbojet engine for
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minimum rise time with temperature-limiting criterions (case C)

Stability device must be added to this system.




1\

. rise tlime

j=)
(&}

Temperature integral

Speed integrai

Max. temperature

Values of control parametera

B,
\\\ Rise time =
\\\\
P
~
T~ temperature
\
Speed integral—
|
LT \ M
- in. speed integral
N for corresaponding
:;P temperature inte-
Temperature integral —~—— gral (from case B)
.2 i.4 i. 2.0
AN (L-aNg)

Flgure 8. - Varlous control parameters as function of A rfor minimum rise time with
temperature-limiting criterions (case C), when accelerating to limiting temperature.
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3 A8
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2 8

Il

Figure 9. - Phase plane showing dynamics of controlled system for minimum rise
time with temperature-limiting criterions (case C), where ~A (L-aNg) = A/8.
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Figure 10. - Typlcal transiente for controlled system for minimum rise time wilth temperature-
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y
i
z=g; (t) . z=g,(t)
z Z
1
t1
Figure 11. - Illustration of curves for minimization of J F(y,y,¥,2,2,2) dt.
0
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